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LETTER TO THE EDITOR 

A note concerning quantum integrability 

Marko Robnik 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, U K  

Received 3 April 1986 

Abstract. Heuristic arguments are presented supporting the conjecture that almost all 
quantum Hamiltonians are integrable in the sense that there exist N ( N = n u m b e r  of 
freedoms) mutually commuting observables (which, in analogy with the classical action 
variables, can be chosen to be the number operators). This follows from perturbational 
considerations: the series may converge for almost all perturbations that preserve the 
discreteness of the spectra, because a ‘quantum small denominator’ almost always uniformly 
satisfies the condition of sufficient irrationality. The radius of convergence vanishes if 
h = 0. The classical limit (as h + 0) of the quantum integrals of motion generically does 
not exist. 

This is a speculative letter in the sense that I do not offer rigorous proofs, but I think 
that the result is correct. It concerns the important question of integrability in quantum 
mechanics and its preservation under small perturbations. As such, it is directed 
towards the search for the quantum analogy of the Kolmogorov-Arnold-Moser ( KAM) 

theorem, but the expected result according to the announced conjecture is of course 
stronger: quantum Hamiltonians are almost always integrable, but the integrals of 
motion (the operators representing the observables) generically do not have the classical 
limit as h +O. Our analysis is confined strictly to Hamiltonians with purely discrete 
spectra, and this imposes certain conditions upon the admissible perturbations: they 
must be bounded (see, e.g., Reed and Simon 1978). The perturbation series may 
converge for almost every admissible perturbation, as we will demonstrate, which is 
the basis for the conjecture that almost every quantum Hamiltonian is integrable. As 
we will see, the reason for convergence is that a quantum small denominator is a 
non-linear function of the integer indices (unlike the linear classical counterpart). The 
leading non-linear term depends on h and vanishes if h = 0. 

A quantum Hamiltonian Ho with N freedoms is defined integrable if there exist 
N operators A,,  1 S n S N, A ,  = Ho, all of them functions of the coordinates q1 and 
momenta p k ,  i.e. 

A n  =An(q/, ~ k )  l S n s N  (1) 

[ A / ,  Ak] = A/Ak - AkAi = 0 

and such that all commutators vanish pairwise, i.e. 

1 s 1, ks N. (2) 

Of course, the coordinates and the momenta satisfy the canonical commutation relations 

r41, P k l =  ih&. 
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We assume that if Ha is a quantum integrable Hamiltonian, then there exists a unitary 
transformation which brings Ho to the normalform 

where 

N, = z i z ,  l s n s N  

are the ladder operators. The number operators (4) are the quantum analogues of the 
classical action variables. 

Now we consider the admissible perturbations of an integrable two-freedom ( N  = 2) 
Ha.miltonian Ha. Let Ho be in the normal form (3) and let the perturbed Hamiltonian 
H be written as 

H = H,+ EHI (7) 
where E is the perturbation parameter and HI is an analytic function of the ladder 
operators ( 5 )  and (6). It is an admissible perturbation represented generally by the 
power series 

oc 

HI= 1 (Z:nZ:mfflm + g , m z ~ Z ~ + Z : n h , m z ~ + Z : " l f l m Z I " )  (8) 
n,m=O 

where the expansion 'coefficients' f n m ,  g,,, h,,, I f l m  are functions of NI and N2 only. 
In (8) we keep only the non-normal terms, the normal part of the perturbation being 
absorbed in Ha. The coefficients must satisfy the symmetry relations 

E m  = grim h f m  = lmn (9 ) 
to ensure that HI is Hermitian, i.e. H: = H, . The expansion (8) is precisely the analogue 
of the classical case, where the perturbation is expressed as a Fourier series in classical 
action-angle variables of Ha. 

The central question is whether a unitary transformation U exists, which restores 
the normal form for H. U can be represented as 

U = exp(iS) (10) 
S being a Hermitian operator (a function of the ladder operators) written as a series 

13 

s= E n s , .  
, = I  

For E = 0 U is identity. Each S,  is expanded in a similar manner to (8); for example 
m 

Since SI is Hermitian we again have 

The question is thus whether there is an S such that 

H' = exp(iS)H exp( -is) (14) 
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is in normal form. Considering only the lowest (linear) term we find 

H ' =  Ho+EHI-iEIHO, S , ] + O ( E ~ )  ( 1 5 )  

[ H , ,  S I ]  = - iHl .  ( 1 6 )  

so that SI must solve the equation 

(As already mentioned, we assume fo0 = g, = ho0 = loo.= 0.) 

for the special case of the quadratic Ho: 
Before discussing a more general case we carefully calculate the solution of ( 1 6 )  

Ho = w ,  N I  + w2N2 + AN: + p N l  N2+ vN: (17 )  

where u, , w , ,  A, p, v are real positive constants. We insert ( 1 2 )  into ( 1 6 )  and calculate 
all commutators. In doing so the following formulae (18)-(34) are used. They are 
derived in a straightforward manner: 

[z,, Z T ]  = h 
+ ( , - I )  [z,, z:"] = mhz, 

[ z m  z+] = mfiz!"'-') 
J 1  J 

where j = 1, 2. Further, 

[ N I ,  z:"] = nhz:" 

where m and n are arbitrary non-negative integers: 

[ N 1 N 2 ,  Z : " Z : ~ U ~ , ]  = ~ : ~ z : ~ a , , ( n h N , + m h N , + n m h ~ )  ( 2 3 )  

[ N I  N,, bnmz;z,"] = -b,,(nhN,+ mhN, + nmh')z;zy (24) 

[ N I N 2 ,  z:~c,,z,"]= z:"c,,(nhN,-mhN,)z," ( 2 5 )  

[N ,N , ,  z~"d , , , z ;"]=z~"d , , (nhN,-mhN,)z~  ( 2 6 )  

[ N:, z : " z : ~ u , , ~ ]  = z ~ " ~ ~ ~ a , , ( 2 n h N ,  + n2h2)  

[ N:, Z : " Z : ~ ~ , , , ]  = z : " ~ ~ ~ u , , , ( 2 m h N ~ +  m 2 h 2 )  

[ N:, b,,z;z,"] = -bn,(2nhN, + n2h2)z;z," 

[ N:, b,,z;z;] = -b,,(2mhN2+ m2h2)z;zY 

[ N:, z:"c,,z,"] = z:"(2nhNI + n2h2)c,,z~ 

[ N:, z:"c,,z,"] = -z:"(2mhN2+ m2h2)c,,zy 

[ N:,z~"d,,z;"] = -z:"(2mhN, + m2h2)d,,,z;" 

[ N : ,  z:"d,,,,zT"] = z:"(2nhN2+ n2h2)d,,z;". 

It can readily be verified that the comparison of coefficients in (16 )  yields 

a,, = ( -ifnm/h)[nwl + mu2+ A(2nN, + n2h)  

f p ( n N , + m N , + n m h ) +  v(2mN2+m2h)]- '  ( 3 5 )  

c,, = (-ih,,,/ A ) [  nu, - mw, + A (2nN,  + n'h) + p (  nN, - mN,)  - v(2mN2 + m2h)]- '  
(36 )  
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and that the relations (13) are satisfied if (9) is satisfied. We can rewrite (35) and (36) 
as follows: 

an, = (-ifn,/h)[(naHo/aNl+maHo/aN2)+ h(An2+pnm+ vm2)]-’ (37) 

c,, =(-ihn,/h)[naH,/aNl-maHo/aN2)+ h(An2- vm’)]-’ (38) 

where n, m =0, 1,  2 , .  . . . The expressions naHo/aNl* maHo/aN2 are exactly the 
classical small denominators. They occur in solving the classical analogue of (16). 
Note that they are linear in n and m. The remainder of the denominator in (37) or 
(38) represents a quantum correction, linear in h, but non-linear in n and m. 

If Ho is not quadratic but a general analytic function of N I  and N 2 ,  then the results 
(37) and (38) generalise as follows: 

where F and G are some analytic functions of the two variables n and m and depend 
on the parameters N I ,  N 2  and h. Of course, if h + 0 one has 

F =  naHo/aN,+mdHo/aN2+O(h) (41) 

G =  naHo/aNl -maH,/aN,+O(h). (42) 

The crucial point concerns the properties of the zero sets of F(n,  m )  and G ( n ,  m ) .  
The curves of zero level are defined by 

F(n ,m)=O G(n ,m)=O.  (43) 

If (43) has integer solutions, n, m E N, then the series (12) diverges. It is clear that for 
general analytic functions the probability of having integer solutions of (43) is zero. 
If there are no integer solutions, we must investigate how close a zero level curve can 
approach the integer lattice points. So let us assume that there are no integer solutions. 

One important observation is that the non-linearities of F and G can give rise to 
closed zero level curves or, more generally, the zero level curve can have finite length. 
(In the quadratic case (37) the zero level curve is an ellipse.) In such a case the 
absolute value of the small denominator IF[,  say, has a definite lower bound Fib= 
Fib( NI, N 2 ,  h )  > 0, but such that Fib + 0 as h + 0. For any finite NI, N2 and h we find 
a uniform lower bound to the denominator of (39) so that the corresponding subseries 
of (12) converge for all finite N I ,  N 2 .  This is already one important consequence of 
non-linearities. 

If the zero level curve defined by G = 0, say, is not closed and has infinite length, 
then the behaviour of the small denominator G in (40) is more critical. (In the quadratic 
case (38) G = 0 defines two hyperbolae.) For a general function G ( n ,  m )  we would 
like to know the distances of the curve G = 0 from the lattice points (n ,  m )  with integer 
n, m as n, m +CO. 

There is one important thing to notice. In the quadratic case (37) and (38), for 
example, the behaviour of G and F for large n and m becomes independent of N I  
and N 2 ,  but depends only on the (non-linearity) parameters p, v, A of H,, and on h. 
This property carries over to the arbitrary polynomial Ho. The crucial point is that, 
since F and G become independent of N I  and N2 in the limit n, m +CO, it is possible 
to satisfy the condition of sufficient irrationality uniformly for all N 1  and N 2 .  In other 
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words, for almost any polynomial Ho there exists a positive constant K ( H o ,  U, h )  
depending only on the parameters of Ho,  on h and on a real constant U > 0, such that 

is satisfied for all m, n EN, m + n # 0 (similarly for F, of course). If (44) is obeyed, 
one can expect a method of superconvergence to be applicable uniformly for all NI 
and N 2 ,  in contrast to the classical case, where the condition of sufficient irrationality 
is a function of the actions in the sense that K depends on the actions. (It is further 
expected that (44) applies to almost every Ho which is an analytic function of NI and 
N2 .) The uniform behaviour of the quantum small denominators as n, m + CO is a 
consequence of the non-linearities of Ho and leads us to the following conjecture. 

Conjecture. There exists for almost any analytic integrable Hamiltonian Ho a convergent 
(or superconvergent) perturbation series for S, such that the unitary transformation 
U = exp(iS) restores the normal form of the perturbed Hamiltonian H = Ho+ &HI, 
where HI is an admissible perturbation. 

If HI were not an admissible perturbation, it would prevent the series converging 
irrespective of other conditions. If true, the conjecture implies that almost all quantum 
Hamiltonians with purely discrete spectra are integrable, for they can be brought to 
the normal form H' and thus each number operator NJ is a constant of motion, i.e. it 
commutes with H ' .  However, the limit of the normal form H '  as h + 0 almost never 
exists: the convergence radius of the series vanishes if h = 0, because the constant K 
of (44) goes to infinity as h + 0, and the condition similar to (44) can no longer be 
satisfied uniformly for all finite N I  and N 2 ,  but only for certain selected values known 
from the KAM theorem. 

Notice that the non-linearity of Ho is decisive for the non-linear (and h dependent) 
corrections to the classical small denominators (see (37) and (38)). If Ho is linear, we 
have the case of the Birkhoff-Gustavson normal form and its quantum equivalents 
(Robnik 1984, Ali 1985, Eckhardt 1986) and we are not surprised to face the divergence 
of the perturbation series in that case. 

What has been (or will be) achieved when the unitary transformation U = exp(iS) 
has been constructed? The meaning of the formalism so far is that we have found 
another Hamiltonian, namely the normal form H ' =  UHU-',  which has the same 
spectrum as H, but it is still a function of the original variables zJ ,  z;. Thus, H '  is an 
integrable Hamiltonian that is spectrally equivalent to H. However, in order to obtain 
an integrable Hamiltonian that is unitarily equivalent to H ( q J , p , )  and has the same 
dynamics, we now have to transform the coordinates and momenta q and p ,  or 
equivalently, 

z, = u z , u +  z; = u z ;  U +  (45 1 
where U is a function of zJ, z,+. After the substitution zJ = z J ( z k ,  zt),  z: = z ,+(zk,  z;)  
we finally obtain the Hamiltonian 

H ' =  H'(Zk ,  2:) (46) 
which is integrable and has the same spectrum and dynamics as H. In this way we 
see that the existence of U guarantees that H = H 0 + & H I  is integrable. (By the 
assumption referred to at the beginning, H' can be put in the normal form by an 
appropriate unitary transformation, since it is integrable.) 
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What matters is the complete unitary transformation of the quantum system H, 
namely the transformation of the Hamilton operator H and the coordinates q and 
momenta p .  Only then is the dynamics preserved. As to the spectrum of H, we mention 
that there always exists an integrable Hamiltonian H,, such that f ( H o )  is another 
integrable system that has the same spectrum as H, where f is an analytic function, 
which is uniquely determined by f( E O j )  = Ej for all j = 1, 2, . . . , W .  However, the 
transformation f is not unitary, in general, and it does not preserve the dynamics (see 
also Robnik and Berry 1986). 

In the appendix we briefly discuss some questions related to the quantum integra- 
bility. 

The conclusion of this letter is that almost all quantum Hamiltonians with purely 
discrete spectra are (quantum) integrable, but that the classical limits of the integrals 
of motion generically do not exist. Further work is in progress to put these ideas on 
rigorous grounds. 

Appendix 

We consider a quantum integrable system with classically ergodic limit. Consider the 
Wigner function 

corresponding to the j th  eigenstate $ j ( q ) .  We make the following observations. 
(i)  As a consequence of the quantum integrability W, is localised at any finite h, 

i.e. it is not ergodic, but concentrated in a certain region in phase space that might be 
called a ‘quantum torus’. It is clear that the semiclassical approach to the classically 
ergodic limit as h + 0 is manifested in the fact that the quantum torus fills the energy 
shell more and more densely as h + O  or as E j + c o .  

(ii) (c5(q) is not a Gaussian random function at any finite h, but becomes such as 
h + 0, or as E, + CO. The deviations from the Gaussian randomness for low lying and 
for high lying states should be observable and they have indeed been observed and 
analysed by Heller (1984), and recently evidence for such deviations was presented 
also by Berry and Robnik (1986). 

(iii) It seems obvious that, as a consequence of the quantum integrability in systems 
with an ergodic classical limit, the only possible place for quantum tori to exist is near 
classically periodic orbits (all of them being unstable, of course). The phenomenon 
is described by Heller’s theory of scars (Heller 1984), but appears here to be a 
consequence of quantum integrability. 

We make two further remarks. 
(iv) If the Hamiltonian has the normal form H( N I ,  N 2 ,  . . . , N N )  then, since it is 

quantum integrable, one might be puzzled to observe GOE or G U E  energy level statistics 
(depending on the existence or non-existence of antiunitary symmetries-see Robnik 
and Berry (1986) and Robnik (1986)) rather than Poisson statistics. However, there 
is no paradox, for the contours H( N ,  , . . . , N N )  = constant can have a non-trivial, 
h-dependent and multiply connected topology. In addition, by the remark at the end 
of the main text, it is always possible to have a non-generic integrable system f ( H o )  
such that it has any prescribed spectrum. Therefore it is not surprising to have quantum 
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integrable systems with classically ergodic dynamics which display GOE or GOF statistics 
rather than Poisson statistics of energy levels. 

(v) For a wide class of classically integrable systems it has been possible to construct 
the quantum integrals of motion (Hietarinta 1984). 
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